Algae Oil
From: Andy Soos, ENN.com
Taking an approach
similar to that used for discovering new therapeutic drugs, chemists at the
University of California, Davis, have found several compounds that can boost
oil production by green microscopic algae, a potential source of biodiesel and
other green fuels. The work appears online in the journal Chemical Biology.
Harvested algae, like
fossil fuel, releases CO2 when burnt but unlike fossil fuel the CO2 is taken
out of the atmosphere by the growing of algae. Among algal fuels
attractive characteristics: they can be grown with minimal impact on fresh
water resources, can be produced using ocean and waste water, and are
biodegradable and relatively harmless to the environment if spilled. The
problem is capital cost and yield to make it economic.
"They can live in saltwater, they take sunlight and carbon dioxide as a building block, and make these long chains of oil that can be converted to biodiesel," said Annaliese Franz, assistant professor of chemistry and an author of the paper.
Franz, graduate students Megan Danielewicz, Diana Wong and Lisa Anderson, and undergraduate student Jordan Boothe screened 83 compounds for their effects on growth and oil production in four strains of microalgae. They identified several that could boost oil production by up to 85 percent, without decreasing growth.
Among the promising compounds were common antioxidants such as epigallocatechin gallate, found in green tea, and butylated hydroxyanisole (BHA), a common food preservative.
The team has carried out growth experiments in culture volumes of up to half a liter. They calculate that some of the chemicals they analyzed would be cost-effective when scaled up to a 50,000 liter pond. After oils have been extracted from the algae, the remaining mass can be processed for animal feed or other uses.
The idea, Franz said, is to look for small molecules that can affect a metabolic pathway in a cell. By setting up large numbers of cell cultures and measuring a simple readout in each, it's possible to screen for large numbers of different compounds in a short time and home in on the most promising.
"The basic concept comes from the pharmaceutical industry, and it's been used for human cells, plants, yeast, but not so far for algae," she said.
"There are many cases where small molecules are having an effect to treat a disease, so it makes sense that if you can affect a pathway in a human for a disease, you can affect a pathway in an algal cell," Franz said.
For further information see Algal Oil.
Algal Fuel image via Wikipedia
"They can live in saltwater, they take sunlight and carbon dioxide as a building block, and make these long chains of oil that can be converted to biodiesel," said Annaliese Franz, assistant professor of chemistry and an author of the paper.
Franz, graduate students Megan Danielewicz, Diana Wong and Lisa Anderson, and undergraduate student Jordan Boothe screened 83 compounds for their effects on growth and oil production in four strains of microalgae. They identified several that could boost oil production by up to 85 percent, without decreasing growth.
Among the promising compounds were common antioxidants such as epigallocatechin gallate, found in green tea, and butylated hydroxyanisole (BHA), a common food preservative.
The team has carried out growth experiments in culture volumes of up to half a liter. They calculate that some of the chemicals they analyzed would be cost-effective when scaled up to a 50,000 liter pond. After oils have been extracted from the algae, the remaining mass can be processed for animal feed or other uses.
The idea, Franz said, is to look for small molecules that can affect a metabolic pathway in a cell. By setting up large numbers of cell cultures and measuring a simple readout in each, it's possible to screen for large numbers of different compounds in a short time and home in on the most promising.
"The basic concept comes from the pharmaceutical industry, and it's been used for human cells, plants, yeast, but not so far for algae," she said.
"There are many cases where small molecules are having an effect to treat a disease, so it makes sense that if you can affect a pathway in a human for a disease, you can affect a pathway in an algal cell," Franz said.
For further information see Algal Oil.
Algal Fuel image via Wikipedia