Traits
Identified for Why Certain Chemicals Reach Toxic Levels in Food Webs
U.S. Department of the Interior, U.S. Geological Survey
Researchers
have figured out what makes certain chemicals accumulate to toxic levels in
aquatic food webs. And, scientists have developed a screening technique to
determine which chemicals pose the greatest risk to the environment.
According
to the study led by the U.S. Geological Survey, two traits were identified that
indicate how chemicals can build up and reach toxic levels: how easily a
chemical is broken down or metabolized by an organism and the chemical’s
ability to dissolve in water.
These
traits account for how most chemicals concentrate, or biomagnify, in
ever-higher levels as one goes up the food chain from its base to its top
predators, such as fish, people, or polar bears.
Chemicals that have the
ability to biomagnify, such as DDT, can have adverse effects on human and
wildlife health and the environment.
“Chemical manufacturers and regulators can use this information to reduce the risks of harmful chemical exposures to ecosystems and the fish, wildlife and people who live in them,” said David Walters, a USGS research ecologist and lead author of the study. “By screening for these two characteristics, we can identify chemicals that pose the greatest risk of the thousands that are on the market and for new ones being developed.”
The
study found that poorly metabolized compounds tend to remain in animal tissues
and are passed up the food chain in higher, more toxic amounts as one animal is
eaten by another and so on.
Likewise, compounds that don’t dissolve well
in water accumulate in animal fats, ultimately exponentially increasing in top
predators.
Beyond
these chemical properties, the researchers found that certain ecosystems and
food webs are more vulnerable to biomagnification than others. For example,
extremely high biomagnification occurred in ocean food webs that include birds
and mammals.
The authors noted this may be in part due to longer food chains in
these ecosystems that is, many levels and kinds of predators - and
because warm-blooded animals need to consume more food than do cold-blooded
animals like fish.
Building
upon these results, the researchers developed a model of biomagnification based
upon how chemicals metabolize and dissolve in water.
The likelihood that a
chemical would biomagnify was highest – nearly 100 percent -- for slowly
metabolized compounds such as chlorinated flame retardants and PCBs, or
polychlorinated biphenyls, regardless of their solubility in water.
We
need to learn from our previous mistakes and have more informed and responsible
design and use of chemicals in the environment,” said Karen Kidd, a Canada
Research Chair at University of New Brunswick Saint John and co-author of the
study.
“Our global review provides a straightforward approach for reducing the use of chemicals with the properties to concentrate through food webs. This is a critical step for decreasing risks for humans and wildlife from potentially harmful chemical exposures in foods.”
“Our global review provides a straightforward approach for reducing the use of chemicals with the properties to concentrate through food webs. This is a critical step for decreasing risks for humans and wildlife from potentially harmful chemical exposures in foods.”
Since
the emergence of DDT as a global problem for wildlife in the 1950s and 60s,
science has kept a close watch on the behavior of persistent organic
pollutants, especially chemicals that may concentrate through food webs to
potentially toxic levels in wildlife and humans.
Many are resistant to
environmental degradation and remain in the environment for decades. While
biomagnification can be measured in the laboratory, said Walters, it is best
determined by measuring how much the chemical increases with each step in the
food chain in wild animal populations.
USGS
research partners in this study, “Trophic Magnification of Organic Chemicals: A
Global Synthesis,” include the Toxicology Centre at the University of
Saskatchewan, the Canadian Rivers Institute at the University of New Brunswick,
and Environment and Climate Change Canada. The study is published in
Environmental Science and Technology.
This
research was supported by the USGS Ecosystems and Environmental Health Mission
Areas, the U.S. Environmental Protection Agency's Great Lakes Research
Initiative, and the Canada Research Chair and Natural Sciences and Engineering
Research Council (NSERC) of Canada programs.