Climate
rewind: Scientists turn carbon dioxide back into coal
RMIT University
Researchers have used liquid metals to turn carbon dioxide back into solid coal, in a world-first breakthrough that could transform our approach to carbon capture and storage.
The research team led by RMIT
University in Melbourne, Australia, have developed a new technique that can
efficiently convert CO2from a gas into solid particles of carbon.
Published in the journal Nature
Communications, the research offers an alternative pathway for safely and
permanently removing the greenhouse gas from our atmosphere.
Current technologies for carbon
capture and storage focus on compressing CO2 into a liquid
form, transporting it to a suitable site and injecting it underground.
But implementation has been hampered
by engineering challenges, issues around economic viability and environmental
concerns about possible leaks from the storage sites.
RMIT researcher Dr Torben Daeneke said converting CO2 into a solid could be a more sustainable approach.
"While we can't literally turn
back time, turning carbon dioxide back into coal and burying it back in the
ground is a bit like rewinding the emissions clock," Daeneke, an
Australian Research Council DECRA Fellow, said.
"To date, CO2 has
only been converted into a solid at extremely high temperatures, making it
industrially unviable.
"By using liquid metals as a
catalyst, we've shown it's possible to turn the gas back into carbon at room
temperature, in a process that's efficient and scalable.
"While more research needs to
be done, it's a crucial first step to delivering solid storage of carbon."
How the carbon conversion works
Lead author, Dr Dorna Esrafilzadeh,
a Vice-Chancellor's Research Fellow in RMIT's School of Engineering, developed
the electrochemical technique to capture and convert atmospheric CO2 to
storable solid carbon.
To convert CO2, the
researchers designed a liquid metal catalyst with specific surface properties
that made it extremely efficient at conducting electricity while chemically
activating the surface.
The carbon dioxide is dissolved in a
beaker filled with an electrolyte liquid and a small amount of the liquid
metal, which is then charged with an electrical current.
The CO2 slowly
converts into solid flakes of carbon, which are naturally detached from the
liquid metal surface, allowing the continuous production of carbonaceous solid.
Esrafilzadeh said the carbon
produced could also be used as an electrode.
"A side benefit of the process
is that the carbon can hold electrical charge, becoming a supercapacitor, so it
could potentially be used as a component in future vehicles."
"The process also produces
synthetic fuel as a by-product, which could also have industrial
applications."
The research was conducted at RMIT's
MicroNano Research Facility and the RMIT Microscopy and Microanalysis Facility,
with lead investigator, Honorary RMIT and ARC Laureate Fellow, Professor
Kourosh Kalantar-Zadeh (now UNSW).
The research is supported by the
Australian Research Council Centre for Future Low-Energy Electronics
Technologies (FLEET) and the ARC Centre of Excellence for Electromaterials Science
(ACES).
The collaboration involved
researchers from Germany (University of Munster), China (Nanjing University of
Aeronautics and Astronautics), the US (North Carolina State University) and
Australia (UNSW, University of Wollongong, Monash University, QUT).