Saturday, July 13, 2019

Brown backs speculative medical research

Funds 5 biomedical technologies with potential for patient benefit, commercial viability

Image result for medical researchTwo researchers are developing a device to stabilize newborns being tested for meningitis. 

Another two are growing human tissue for post heart-attack repair. 

Others are focused on solutions aimed at diagnosing or treating diabetes, pulmonary fibrosis and back pain.

Brown Biomedical Innovations to Impact (BBII) will award each of those five Brown University faculty research projects up to $100,000 to translate promising discoveries in biomedical research into product opportunities that may benefit patients and be commercially viable.

The five awards culminate the first full award cycle for BBII, a commercial development program launched by the University’s Division of Biology and Medicine in collaboration with the Office of Industry Engagement and Commercial Venturing. 

The primary goal of BBII is to help bridge the “valley of death” — the gap between federal funding for research and when private investors are willing to invest — for biomedical research projects led by Brown faculty. 



The ultimate aim is to benefit both patients and the economy by launching new products such as therapeutics, diagnostics and medical devices and even startup companies based on Brown research, said Karen Bulock, managing director of BBII.

“BBII helps to bridge the gap between academic biomedical discoveries and new products by providing much-needed funding for this type of research,” Bulock said. 

“We look forward to collaborating with the 2019 awardees to further develop their technologies toward real products that can help patients. BBII also offers coaching and project management resources to guide technologies through proof-of-concept into well-defined product opportunities that will attract the attention of industry collaborators and potential investors.”

The work of BBII complements Brown’s ongoing efforts to boost innovation in Rhode Island and is one of five actions outlined in Brown and the Innovation Economy, a plan debuted in 2018 to expand the University’s impact on economic growth across the Ocean State. To date, BBII has been supported by more than $8 million in philanthropic gifts.

The 26 project proposals BBII received were evaluated by an external advisory committee of industry leaders such as pharmaceutical business developers and venture capitalists. The committee guided the selection of the winning projects based on criteria such as potential impact of the product, the market needs and patentability of the technology, Bulock said. 

The faculty members leading each project will receive initial funding beginning later this month and additional funds as they meet certain milestones over the next year. Below is an overview of each of the selected projects.

Developing an infant lumbar puncture stabilizer

Dr. Brian Alverson, a professor of pediatrics and medical science and the director of the Division of Hospital Medicine at Hasbro Children’s Hospital, and Dr. Ravi D‘Cruz, a teaching fellow in the Warren Alpert Medical School Department of Pediatrics, will develop and test a positioning device to stabilize feverish infants less than 60 days old who must undergo a lumbar puncture to test for meningitis. 

Performing lumbar punctures on tiny babies is challenging, yet a good sample of cerebrospinal fluid is critical for determining if antibiotics are necessary as well as the correct antibiotic to use. A device to improve performing lumbar punctures would improve the care of these infants and reduce unnecessary medical costs, Alverson wrote in his application.

Discovering new drugs to treat metabolic disorders such as obesity and Type 2 diabetes

Dr. Stephen Helfand, a professor in the Department of Molecular Biology, Cell Biology and Biochemistry, will work to identify potential drugs to stop a protein known as INDY, an acronym for the colorfully named “I’m Not Dead Yet” protein. 

Prior research has shown that this protein is important for energy metabolism in animals from flies to humans. These studies suggest that the human version of INDY, found in the liver, is an excellent target for therapeutic interventions of the major metabolic disorders, such as Type 2 diabetes, obesity and hypertension, Helfand wrote in his application. His team will perform a high-throughput screen for small molecule drug candidates to inhibit INDY activity in a test tube. 

Optimizing a new drug to treat pulmonary fibrosis

Dr. Chun Geun Lee, a professor (research) in the Department of Molecular Microbiology and Immunology, will chemically optimize kasugamycin to make it a better drug. 

Kasugamycin is an antibiotic that has been found to stop the activity of Chitinase 1, which earlier work shows plays a critical role in the lung scarring that causes pulmonary fibrosis. 

Lee’s team will focus on making chemical derivatives of kasugamycin that are more effective at preventing and treating lung scarring and have reduced antibacterial activity. This may lead to the development of a new drug that is safe, effective and readily available to patients with pulmonary fibrosis, Lee wrote in his application.

Growing human tissues for post-heart-attack repair

Jeffrey Morgan, a professor in the Department of Molecular Pharmacology, Physiology and Biotechnology and engineering and Blanche Ip, an assistant professor (research), in the Department of Molecular Pharmacology, Physiology and Biotechnology, will use their award to advance their method of producing lab-grown, human-derived tissue to repair the heart after a heart attack. 

Specifically, the team grows human heart cells in the lab to produce a scaffold called extracellular matrix and then removes the cells. 

The extracellular matrix could be injected into damaged part of the heart to encourage growth and repair, a significantly less invasive procedure than a heart transplant, Morgan wrote in his application. Morgan’s team will focus on determining the optimal conditions to produce extracellular matrix with the proper characteristics for testing in rodents and scaling up.

Developing an EEG-based test for diagnosing lower back pain

Carl Saab, an associate professor of neurosurgery and neuroscience (research) at Brown and Rhode Island Hospital, will use his award to apply his objective EEG-based test for measuring pain to aid in the diagnosis of acute and chronic low back pain. 

Prior research has shown that his EEG-based method works in rodents; his next step is to apply this technology in the clinic to assess different kinds of back pain. Low back pain is the leading cause of disability worldwide, so being able to determine whether a patient’s pain will be short-lived yet acute, or chronic and debilitating and the correct treatment plan for them would be quite useful, Saab wrote in his application. 

This may even lead to reducing the over-prescription of opioids.