Giving robots social skills
A new machine-learning
system helps robots understand and perform certain social interactions.
Massachusetts Institute of Technology
Robots can deliver food on a college campus and hit a hole in one on the golf course, but even the most sophisticated robot can't perform basic social interactions that are critical to everyday human life.
MIT researchers have
now incorporated certain social interactions into a framework for robotics,
enabling machines to understand what it means to help or hinder one another,
and to learn to perform these social behaviors on their own. In a simulated
environment, a robot watches its companion, guesses what task it wants to
accomplish, and then helps or hinders this other robot based on its own goals.
The researchers also
showed that their model creates realistic and predictable social interactions.
When they showed videos of these simulated robots interacting with one another
to humans, the human viewers mostly agreed with the model about what type of social
behavior was occurring.
Enabling robots to
exhibit social skills could lead to smoother and more positive human-robot
interactions. For instance, a robot in an assisted living facility could use
these capabilities to help create a more caring environment for elderly
individuals. The new model may also enable scientists to measure social
interactions quantitatively, which could help psychologists study autism or
analyze the effects of antidepressants.
"Robots will live in our world soon enough and they really need to learn how to communicate with us on human terms. They need to understand when it is time for them to help and when it is time for them to see what they can do to prevent something from happening. This is very early work and we are barely scratching the surface, but I feel like this is the first very serious attempt for understanding what it means for humans and machines to interact socially," says Boris Katz, principal research scientist and head of the InfoLab Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and a member of the Center for Brains, Minds, and Machines (CBMM).
Joining Katz on the
paper are co-lead author Ravi Tejwani, a research assistant at CSAIL; co-lead
author Yen-Ling Kuo, a CSAIL PhD student; Tianmin Shu, a postdoc in the
Department of Brain and Cognitive Sciences; and senior author Andrei Barbu, a
research scientist at CSAIL and CBMM. The research will be presented at the
Conference on Robot Learning in November.
A social simulation
To study social
interactions, the researchers created a simulated environment where robots
pursue physical and social goals as they move around a two-dimensional grid.
A physical goal
relates to the environment. For example, a robot's physical goal might be to
navigate to a tree at a certain point on the grid. A social goal involves
guessing what another robot is trying to do and then acting based on that
estimation, like helping another robot water the tree.
The researchers use
their model to specify what a robot's physical goals are, what its social goals
are, and how much emphasis it should place on one over the other. The robot is
rewarded for actions it takes that get it closer to accomplishing its goals. If
a robot is trying to help its companion, it adjusts its reward to match that of
the other robot; if it is trying to hinder, it adjusts its reward to be the
opposite. The planner, an algorithm that decides which actions the robot should
take, uses this continually updating reward to guide the robot to carry out a
blend of physical and social goals.
"We have opened a
new mathematical framework for how you model social interaction between two
agents. If you are a robot, and you want to go to location X, and I am another
robot and I see that you are trying to go to location X, I can cooperate by
helping you get to location X faster. That might mean moving X closer to you,
finding another better X, or taking whatever action you had to take at X. Our
formulation allows the plan to discover the 'how'; we specify the 'what' in
terms of what social interactions mean mathematically," says Tejwani.
Blending a robot's
physical and social goals is important to create realistic interactions, since
humans who help one another have limits to how far they will go. For instance,
a rational person likely wouldn't just hand a stranger their wallet, Barbu
says.
The researchers used
this mathematical framework to define three types of robots. A level 0 robot
has only physical goals and cannot reason socially. A level 1 robot has physical
and social goals but assumes all other robots only have physical goals. Level 1
robots can take actions based on the physical goals of other robots, like
helping and hindering. A level 2 robot assumes other robots have social and
physical goals; these robots can take more sophisticated actions like joining
in to help together.
Evaluating the model
To see how their model
compared to human perspectives about social interactions, they created 98
different scenarios with robots at levels 0, 1, and 2. Twelve humans watched
196 video clips of the robots interacting, and then were asked to estimate the
physical and social goals of those robots.
In most instances,
their model agreed with what the humans thought about the social interactions
that were occurring in each frame.
"We have this
long-term interest, both to build computational models for robots, but also to
dig deeper into the human aspects of this. We want to find out what features
from these videos humans are using to understand social interactions. Can we
make an objective test for your ability to recognize social interactions? Maybe
there is a way to teach people to recognize these social interactions and
improve their abilities. We are a long way from this, but even just being able
to measure social interactions effectively is a big step forward," Barbu
says.
Toward greater
sophistication
The researchers are
working on developing a system with 3D agents in an environment that allows
many more types of interactions, such as the manipulation of household objects.
They are also planning to modify their model to include environments where
actions can fail.
The researchers also
want to incorporate a neural network-based robot planner into the model, which
learns from experience and performs faster. Finally, they hope to run an
experiment to collect data about the features humans use to determine if two
robots are engaging in a social interaction.
"Hopefully, we
will have a benchmark that allows all researchers to work on these social
interactions and inspire the kinds of science and engineering advances we've
seen in other areas such as object and action recognition," Barbu says.
This research was
supported by the Center for Brains, Minds, and Machines, the National Science
Foundation, the MIT CSAIL Systems that Learn Initiative, the MIT-IBM Watson AI
Lab, the DARPA Artificial Social Intelligence for Successful Teams program, the
U.S. Air Force Research Laboratory, the U.S. Air Force Artificial Intelligence
Accelerator, and the Office of Naval Research.