Scientists identify a link between spatial memory and genes in a bird
Cornell University
For the first time, researchers have shown that there is a genetic component underlying the amazing spatial memories of Mountain Chickadees. These energetic half-ounce birds hide thousands of food items every fall and rely on these hidden stores to get through harsh winters in the mountains of the West.
To
find these caches, chickadees use highly specialized spatial memory abilities.
Although the genetic basis for spatial memory has been shown for humans and
other mammals, direct evidence of that connection has never before been
identified in birds.
These
findings were just published in the journal Current Biology. The
research is a collaboration among scientists from the Cornell Lab of
Ornithology, the University of Colorado Boulder, the University of Nevada,
Reno, and the University of Oklahoma.
"We
all use spatial memory to navigate our environment," says lead author
Carrie Branch at the Cornell Lab of Ornithology. "Without memory there's
no learning and an organism would have to start from scratch for every task.
So, it really is life and death for these birds to be able to remember where
they stashed their food. We've been able to show that natural selection is
shaping their ability to remember locations."
If
natural selection (survival of the fittest) is shaping chickadee memory,
certain criteria have to be met. There has to be variation in the trait: some
chickadees are indeed better than others at re-finding their stores. There has
to be a fitness advantage: birds that perform better on a spatial memory task
are more likely to survive and produce offspring. Importantly, variation in the
trait must have a genetic basis.
"Environment does still matter a lot in terms of shaping behavior, but our work here suggests that genes may create the brain structures, and then experience and learning can build on top of that," Branch explains.
How do you measure a chickadee's memory? Senior author Vladimir Pravosudov and his team at the University of Nevada, Reno, designed arrays of "smart" feeders to measure memory in a population of wild Mountain Chickadees in California's Sierra Nevada mountains. Each feeder is equipped with radio frequency identification sensors.
The 42 birds tested were fitted with leg tags
the size of a grain of rice which give off an identifying signal. Each bird was
assigned to one of the eight feeders in each array. The feeder sensor reads the
bird's ID tag and if it's the matching feeder for that individual, a mechanism
opens the door, and the bird gets a seed. The scientists then tracked how many
tries it took before the birds consistently went to the correct feeder.
"This
is an effective system to test spatial learning and memory in hundreds of wild
chickadees in their natural environment," said Pravosudov. "We have
previously shown that even very small variations in performance are associated
with differences in survival."
To
understand the connection between spatial memory and genetic architecture,
co-authors Georgy Semenov and Scott Taylor at the University of Colorado
Boulder, sequenced Mountain Chickadee genomes.
"We
used two methods to link genetic variation with spatial memory in
chickadees," said Semenov. "In the traditional genome-wide approach,
we compared genetic data across individuals, from those that performed well on
the spatial learning and memory task to those that performed poorly. We did the
same comparison with a new machine learning algorithm. Both methods showed
hundreds of differences associated with spatial memory. Many of the variations
in the genomes turned up in areas known to be associated with learning, memory,
and neuron development in the brain."
The
authors say many questions remain about the influence of spatial memory itself,
including what role it may play in the female's choice of a mate.
This
research was supported by grants to the University of Nevada, Reno, and to the
University of Colorado Boulder, from the National Science Foundation and by a
Rose Postdoctoral Fellowship from the Cornell Lab of Ornithology.