Tracing tomatoes' health benefits to gut microbes
Ohio State University
Two weeks of eating a diet heavy in tomatoes increased the diversity of gut microbes and altered gut bacteria toward a more favorable profile in young pigs, researchers found.
After
observing these results with a short-term intervention, the research team plans
to progress to similar studies in people, looking for health-related links
between tomatoes in the diet and changes to the human gut microbiome -- the
community of microorganisms living in the gastrointestinal tract.
"It's possible that tomatoes impart benefits through their modulation of the gut microbiome," said senior author Jessica Cooperstone, assistant professor of horticulture and crop science and food science and technology at The Ohio State University.
"Overall
dietary patterns have been associated with differences in microbiome
composition, but food-specific effects haven't been studied very much,"
Cooperstone said. "Ultimately we'd like to identify in humans what the role
is of these particular microorganisms and how they might be contributing to
potential health outcomes."
The
research is published in the journal Microbiology Spectrum.
The
tomatoes used in the study were developed by Ohio State plant breeder, tomato
geneticist and co-author David Francis, and are the type typically found in
canned tomato products.
Ten
recently weaned control pigs were fed a standard diet and 10 pigs were fed the
standard diet fine-tuned so that 10% of the food consisted of a freeze-dried powder
made from the tomatoes.
Fiber,
sugar, protein, fat and calories were identical for both diets. The control and
study pig populations lived separately, and researchers running the study
minimized their time spent with the pigs -- a series of precautions designed to
ensure that any microbiome changes seen with the study diet could be attributed
to chemical compounds in the tomatoes.
Microbial
communities in the pigs' guts were detected in fecal samples taken before the
study began and then seven and 14 days after the diet was introduced.
The
team used a technique called shotgun metagenomics to sequence all microbial DNA
present in the samples. Results showed two main changes in the microbiomes of
pigs fed the tomato-heavy diet -- the diversity of microbe species in their
guts increased, and the concentrations of two types of bacteria common in the
mammal microbiome shifted to a more favorable profile.
This
higher ratio of the phyla Bacteroidota (formerly known as Bacteriodetes)
compared to Bacillota (formerly known as Firmicutes) present in the microbiome
has been found to be linked with positive health outcomes, while other studies
have linked this ratio in reverse, of higher Bacillota compared to
Bacteroidota, to obesity.
Tomatoes
account for about 22% of vegetable intake in Western diets, and previous
research has associated consumption of tomatoes with reduced risk for the
development of various conditions that include cardiovascular disease and some
cancers.
But
tomatoes' impact on the gut microbiome is still a mystery, and Cooperstone said
these findings in pigs -- whose gastrointestinal tract is more similar than
rodents' to the human GI system -- suggest it's an avenue worth exploring.
"This
was our first investigation as to how tomato consumption might affect the
microbiome, and we've characterized which microbes are present, and how their
relative abundance has changed with this tomato intervention," she said.
"To
really understand the mechanisms, we need to do more of this kind of work in
the long term in humans. We also want to understand the complex interplay --
how does consuming these foods change the composition of what microbes are
present, and functionally, what does that do?
"A
better understanding could lead to more evidence-based dietary recommendations
for long-term health."
This
work was supported by the U.S. Department of Agriculture, the Ohio Agricultural
Research and Development Center and the Foods for Health initiative at Ohio
State.
The study was led by Mallory Goggans, who received her master's degree in food science and technology from Ohio State in 2020.Additional co-authors include Emma Bilbrey, Cristian Quiroz-Moreno and Sheila Jacobi of Ohio State, and Jasna Kovac of Penn State University.